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EFFECT OF CIRCUMFERENTIAL NONUNIFORMITY OF FLOW
DIRECTION ON RESONANCE VIBRATIONS OF COMPRESSOR ROTOR BLADES

V. A. Kulagina

ABSTRACT: Estimation of the effect of a circumferential
nonuniformity of the flow direction in front of a compres-
sor wheel on the amplitude of resonance vibrations of the
blades. The effect of the boundary conditions behind the
wheel on the intensity of the flow spread in the inlet
section of the compressor and on the blade vibrations is
shown.

Until now the circumferential nonuniformity of flow direction in front of /96*

a rotor operating in a flow with circumferentially nonuniform velocity distri-

bution was not taken into account\ in determination of the amplitude of reso-

nance vibrations of the axial compressor vanes. Meanwhile, theoretical works

[4, 5] and experimental research [1] indicate that there is rapid spreading of

the flow in front of the working compressor wheel.

An attempt is made in this work to consider and evaluate the effect of

nonuniformity of the flow direction on the amplitude of resonance vibrations

of the vanes. The problem is solved for low flow velocities in stationary,

linear statement and is the logical continuation of previous works [2, 3].

Suppose we have a working axial compressor wheel as illustrated in Figure

1. Its gas dynamic characteristics are given by the dependences of the com-

pression ratio Wc = P2/P1 and theoretical head coefficient Ht on the air flow

factor cla at calculated angle al.

In the compressor intake "at infinity" there is known circumferential non-

uniformity of flow velocity; we represent flow nonuniformity in the intake into

the working wheel as a sum of the nonuniformity of the velocity arriving from

"infinity" and circumferential nonuniformity of static pressure, flow velocity

and direction induced by the compressor impeller.

*Numbers in the margin indicate pagination in the foreign text. 1



.- -_- We will assume that spreading of the

flow occurs entirely within the intake part

~ a }~ i ~
/

of the compressor, and that the flow does

! I §I 1 not spread in its vane section. It has /97

- 2
_ r | ' been shown [4] that section assumption cor-

l-_ __ 1 2 ... responds best of all to the physical pat-

tern of the phenomenon.
Figure 1. Flow Section of a

Compressor. We will assume that the angle of exit

of the flow from the impeller in relative

motion 82 is constant with respect to circumference and that we know the slope

of the gas-dynamic characteristic of the exhaust duct of the compressor, given

in the form of the parameter

K = 
6
P

2

6C2a

The compressor operates at the circumferential velocity at which resonance

vibrations of the impeller vanes are stimulated according to the first flexure

configuration, i.e., the frequency of natural vibrations wv of the vanes is a

multiple of the revolution frequency of the compressor rotor wv = swc = s2insec

The vibrations of the vanes are harmonic:

x = xoSin(w vt + By);

Displacements of a vane in the presence of vibrations is illustrated in Figure

2. All vanes of the impeller have the same frequency of natural vibrations.

In the interest of simplifying further calculations we will introduce,

instead of the gas-dynamic characteristic, the function p(Cla, Xa, a
1
), the

rise of air pressure in an impeller with vibrating vanes:

(P2 - Pl)/Pl = (u + Xu) (Cla, x a , al ) ,

and also the function $(cla, Xa, al) - dimensionless power coefficient:

(Cla' Xa, al) = (C l a + Xa)Ht(la' Xa', al)'
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Here xa, xU are the components of the rate

respect to the coordinate axes (see Figure

/98of vibrations of the vane with

2):

x .
Xa = x/u cos t; xU = - sin .a u u

I-
C:)

Figure 2. Displacements of Vane During
Vibration.Vibration.

We will first determine

the parameters of circumfer-

ential nonuniformity of flow

in front of and behind the

compressor.

At infinity in front of

the compressor the distribution

of the flow velocity with

respect to circumference is

known:

coa = 0Ca av +o nc

n

+ ensSin ne;

cos ne

(1)

there is no nonuniformity of static pressure:

p, = const; (2)

flow direction is axial:

a% = Tr/2. (3)

The relative magnitude of velocity nonuniformity in the compressor intake

is determined by the nonuniformity of the total pressure loss coefficient:

c - c

c v
X av

Ac Ap*
in

o av M in
in

and at low flow velocities it does not depend on the number Min.in
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In front of the impeller, in addition to velocity nonuniformity, is also

compressor-induced circumferential flow nonuniformity. We will define it as

follows:

ca(e, a); cu(e, a); p'(e, a).

The flow parameters in the compressor intake will be:

c = c +E e ncos ne + c sin nO + c'; (4)
Ca saa av nc nsa

n

P Pav + P
'; (5)

c = C'. (6)u u

We will denote

c =c P - P-Ca a av P PaV CU X
= 6Ca; 6p; c-= -da 6a.

c a' p c 2
a av av a av

To find the flow in the compressor intake, i.e., to determine the functions /99

ca, p', cu, we will solve the equations of motion similarly as is done in [4].

We will assume that the flow moves along the cylindrical surfaces and that flow

perturbations are small. In this case perturbed flow is potential. The equa-

tions of motion and continuity of the perturbed flow will have the following

form:

u 1 Dp,
rca av u - 4 (7)

Ca av a p a 

Dc,
c a a M '(8)
aav h p = a'

1 u a
1 u + Ma 0 (9)rThe equ ations is found in the form of the seriesa

The solution of the equations is found in the form of the series
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' = Znc (a)cos nO + z (a) sin nO. (10)
a ns

n

To determine the functions z (a) we obtain the differential equation

r2 d3zn dzn
2 n n= (11)

n2 d 3 daa

with boundary conditions:

where a = - we have c' = 0; znc z = 0.

Solving equation (11), we obtain

z = a ena/r z = a ena/r a a - constants. /
nc nc 'ns ns nc' ns

From equations (7)-(9), considering the above introduced definitions, we

obtain the following expressions for circumferential nonuniformity of flow in

section 1-1 directly in front of the impeller (flow a = 0);

6cla = (cnc + anc)cos nO +(Cns + ans)sin nO; (12)
n

6pl = -banccos nO + an sin nO, (13)

where 2
1 la av 2 nc ans

b= KM ; a = a
Pi1 nc c ns c

P a av aav

c
u av

The values a and a still remain unknown.
nc ns

We will now examine flow in the vane section of the compressor. Since we /100

assumed that the flow did not spread in the compressor, to analyze flow in
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section 1-2 of the compressor (see Figure 1) we will use the equation of uni-

dimensional fluid flow, similarly as done in [3]. For this section we may

write three equations in finite differences.

From the equation of continuity we obtain equation

6Pl + 6Cla = 6P2 + 6C2a' (15)

For the dependence of rr - compression ratio in an impeller with vibrating
vanes on , , l we obtain

vanes - on cla, Xa, a 1 , u we obtain

- I (6P2 - 6P1) = 6u + (6cla
c 6Clala

- 6u) + -'- x + 6 dal,
ax daa 1

7c 61 cla c 2sin.

c~~~~~~~~~~( 6~
_ 1(6P2 6pl) = 6C la+ 2 -- 6II + T sin6 -2 1

c 6Cla H st sin1 6cla1 la~~

where

C = sin O +
cosO (6p/xa)

Cla(6p/6Cla )

= sin a + cos 1 + la

cla Ht(6/ 6Cla) 

The derivative 6p/6Cla = dTc/(dcla) (Cla)/(Tc - 1) can be found graphically

according to the given characteristic of the impeller; in determining the

derivatives 6/6xa and 6p/6al1 it was assumed that they are proportional to the

values 6Ht/6xa and 6Ht/dal, respectively.

The approximate equation

Ht = 1 -(c2a + xa)CotB2 - Cla cota1. (17)

was used for the theoretical head coefficient Ht. The boundary condition in

6
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which is employed the slope of the compressor exhaust duct characteristic gives

us the third equation:

6P2 = K6c2a' (18)

From expressions (15) and (18) we obtain

6P2 = K/(K + 1)(6pl + 6Cla); (19)

6c2a = 1/(K + 1)(6Pl + 6Cla)' (20)

Equation (16) now acquires the following form:

Tc 1 T c K 61 C la
c - 1 K + 1 61 - 1 K+ 1 la 

c ~~~c 6i snla Ht

-x o61 - 2sin A 0
6cla

and can be used for

and 1-2 (see Figure

a1

sin2 a 1

(21)

joining the solutions found for compressor segments - -

1) and for determining the constants an and as'nc ns

1

We will denote

c 1
c 1 = A;

s~1 K+i1

c K 6~
_- -= B;

6-
- 1 K+ 1 cla

c C l

Cla 1 C; 
1 C; - 2sin a = D.

Ht sin2 6c la

Equation (21) acquires the following form:\

A6P1 + B6Cla - C16al - Lx = O.

/101

(22)
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We will seek the constants a c' as's corresponding to a harmonic of the

order s, exciting resonance vibrations of the vanes (n = s). The flowing co-

ordinate in the circumferential direction 0 = 2 rnsect = w ct can be expressed

through the frequency of vane vibrations:

nO = so = SW t = w t.
c v

The displacements of the vane in the presence of vibrations are

x = x 0 sin(wvt + 8V),

and the rate of vibrations is

xOW xOW v
x = u CoS(Wvt = ); xO

The phase of vane vibrations Sv is still unknown. j
By substituting the expressions for dP1, 6 cla, 6

1
l into equation (22) we

find the following equation for the s-th harmonic causing the vibrations:

coswvt[( -Ab + B)aSc + BCsc + Ca - Dx0coSBv] +

(23)

+ sinwvt[ -CasC -(Ab + B)ass + BESs + Dx0 sinv] = 0.

Equating to zero the coefficients for cosw vt and sinwvt, we obtain two

equations for determining unknown asc and ass.

Solving these equations we obtain /102

11al

~~~(Ab+B
2
+C -- /

sc (-Ab + )2 + C2 )2

8



-1 -- 1

- s BC 1; 2) - esSB (- Ab + B) + x
0 cosSDC (/2)Sc B C(T/2) 2

-x 
0
sinl

1
D( -Ab + B)

a = (25)

(-Ab + B)2 + C2 [ 1/2 

For all nonresonating harmonics n # s, the vibrations of the vanes x = 0.

In the case when the initial velocity nonuniformity (at infinity) has

axial symmetry velocity distribution with respect to circumference is described

by a series in cosigns and all coefficients £ns = 0. In the remainder of the

discussion, first simplicity, we will examine such a case.

We will replace A, B, C, D by their values.

Considering that the value (7c - 1) is small at low flow velocities and

its squares can be ignored, we obtain

_ /s K + 1 c 1 / 

= E 1 wc - ) + x Cos- 2sinc)

a sc=sc
K+ b c - 6
K + 1 c 6c (26)

la

-- c - 1 Cla 1 al1 K

sc in2 (*/2) K + 1
c H sin

/K+b Tc -2

K +- 1 -
c\ C cla

sc 1
x sinS c 1 _C_ -a 2sin

(27)
K+b c 61(
K+l ·c 1cTa

la
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We may now write the expression for flow nonuniformity in front of the

impeller, using equations (12), (13) and (14).

For the case when K O, we obtain

Kb
p 1 K + b E £nccos ne; (28)

n

6C la K b Z EncCOS nO; (29) /103

n

a 2 K +-b E cSin n, (30)
n

and for the case K = 0

-b--

6Pl = Tc 1 CncCOS ne; (31)

b-

7cC 6Cla

6c la = b Enccos no; (32)
It -

b-

6Tc 6Cla

7T 1-
c 6c

-6cT C la
1 2 1 = -lF- sinnO

b-

Cc 6Cla

We will now examine the aerodynamic forces acting 4n a vane vibrating in

a circumferentially nonuniform flow. For small flow velocities the component

of aerodynamic force in the direction of the compressor axis can be expressed

as follows:
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(34)Pa 
=

FvPl( ( - 1);

hence

dP
a

FvP 1 = c6P 2 - 6pl + - 1) F
v

Considering the change of area 6Fv, as a result of the out-of-phase vibra-

tions of adjacent vanes, equates to 6Fv = -x sin 0 for small-order harmonics

(see [3]), we obtain

dP
a

FVP - (c7FVP, c
Tr-1) s -- ~ 1(6P2 .. 6P1) + 6pl - x sin a |

c
- ~~1,(8T -1cp2 - 6pl) + 6pl - x sin 0 

[_ c

Using condition (16), we may write, finally:

dP
a

FvP 1 (c -
1) [6P1 + 6_ cla

la

Cla al
- sin2a +
Hq sin 2c

+ ( C 6__c
6Cla

-3 sin 0 ) I 

The component of aerodynamic force in the circumferential direction is

pU _ -
u =Fp1 (U+ XU))2 cla, Xa , a1) ,

(Cla, Xa, al) = (Cla + Xa)Ht(Cla' a, 1al).

Using expression (17) we obtain

where

(35)

/104

(36)
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dP c l a

FvPt (c 1) 
+ 6c aCla l1

LPl+ I-c la jy sin c6 1

6c la sin2alla ·r T

+x C-3 sina
6Cla

here

cos s (6c/6xoa)= cos 1 Cla cot l
sn= -+ sin 1 +

Cla (61/6Cla) Cla H T(6/6C-la) 

The variable aerodynamic force acting in the direction of vane vibrations,

can be expressed as follows (Figure 2):

dPa = dPacos 0 + dPusin 0;
u

dPa

FvP = ( c

Cla
+ n sin 0

- 1) 6p1 cos 0 + la sin )

+ cCla 6C
+ -c(6 cos 0 + la

la 6 la

+ 6a C n2la l (cos 0 +
+ 

1 sin2 a

sin [ +X S( 6la

k 6c la

-3sin cos 0 + 
l a

l

We will substitute expressions (28)-(30) and

for the force dP 0 and extract only the resonating

(n = s, ne = wvZ).

-3sin ) sin ] } (38)

(31)-(33) into the equation

harmonic of the force

Then for K > 0 we obtain

12
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dP
o

Fp 1 ( r
c -1)

+ b (

1
sin 2 a1

:ncCOSmvt os ' (s -s n +I -b

--- COS

6cla

C + la 64

C la
0 +U sin 0) ] sinwt Knc v K + b

-3 sin ) cos a +
/2)

(Tr/2)
(cos la sin 0 + [( 6+l

la

Cla
nT ( $ 6ci -3

6Cla

sin ) sin] I;

and for K = 0

i - 1
-b

ITrC 6CladPa
FvP 1 (Tc
F vpl C

+

-1) | n c6sw t 

- c6Smvt~~~~~~~~~~~~~ 7Tr - 1

b-
c

b

Tc 1 
b-

c 6Cla

-E sinm t
nc v

Cla 1 a 1

H sinal (T/2)
-U

6--- cos 0

la

Cuc

rr - 1
b-

c

(COS

(39)

/105

la sinsin

6la
6cla

+ Cla
rlC

- in

6Cla

sc

6

Cla .[ 6_sx 6la - 3sin 0 cos 0 +
f i T s i n / [ \~- ' SC l

Cla

(40)

13
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+ (- a -3sin 0 sin (40)

For resonance vibrations of vanes, ignoring the forces of mechanical

damping, we may write

dPa = 0.

Consequently,

X0 W

Cnccosv tC 1 + c sinco tC + cos(Wt + v)C 0. (41)nc v B nc v C.B
2

u D

We rewrite equation (41) in the form

Xo0 Wv
£V I CB2 +C2 -C cos (wvt + By); (42)nc B B2CO C D ul) C

nc B2 u

hence = HncV'C 1 + C~f 

_+u _ (43)
-C vD c

B2
Tv = 3B = arc tan . (44)~v ~B C (44)

In the absence of flow spread in front of the impeller

nCB
1

u

°= C C wv (45)
-CD v

Comparison of expressions (43) and (45) shows that the effect of circum- /106

ferential nonuniformity of flow direction in front of the impeller on vane

resonant vibrations is manifested in a change of the coefficient of aerodynamic

excitation. There is an additional term CB which has considerable value.
The so-called point of zero excitation, previously the object of attention [2]

The so-called point of zero excitation, previously the object of attention [2]
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and [3],.where only the nonuniformity of axial velocity and static pressure

was examined, vanishes. We will recall that the presence of the point of zero

excitation is not supported by experimental data.

We will examine the limiting cases of the boundary conditions:

1) K =O Complete Equalization of Static Pressure Behind Impeller

-1.4M2 c 
c o6Cla

/ c sin \(cos 0 + la sin +
\C nT/

2 rC 1 -
1. 4M21 C Tr -

c 6 la

1. 4M2
1

1.4M2 c 
1 C

6a

6cla

Cla 1
CB = s in2 (

2 H sin2 c/
iT 1

a¢ cos 0 + __ o sin 0 ;
\ola nuT r- 

6la c6 la

Tc --

os n + lin ;

) 2 Tc - 1f i T

1 c 6o
c 6c-la

CD = df la -3sin ) cos 0 + ( 3sla il -3sin .sin 

Cla T l

Tr - l

At the point where CB = 0, the coefficient is CB # 0 (if c

=i B c # O1 an teamltueofvaevirtinc 6Cla
Cla dr

c a 0) and the amplitude of vane vibrations x0 # 0.
c dla

15
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2). K = - No Nonuniformity of Velocity

C 1 4M (cos a + la sina)

CC la 1 (cos + la sin c

B2 T sin2al (7r/2) (cos -

CD ( 6 in + e C 6 -3sin c sin a.

6c ClaT \ la

The amplitude of vane vibrations is determined completely for flow spread /107

at the compressor ifilet (coefficient C ).
1

The results of the calculation are presented in Figure 3. The dependence

of the relative (dimensionless) amplitude of resonance vibrations of the vanes

on the air flow coefficient cla - is illustrated with and without consideration

of the spreading of the flow in the compressor inlet or various parameters K.

We see that allowance for the effect of nonuniformity of flow direction in front

of the impeller substantially altered the path of the amplitude curves. The

point of zero amplitude vanished and the results of the calculation thereupon

approximated the experimental results.

16



i i ai
I t r I I I

-j *~ ~ - -

"" dti i5 U u.7

Figure 3. Dependence of Relative Amplitude of Resonance
Vibrations of the Vanes on Their Flow Coefficient:

, Calculation with allowance for flow spreading
in inlet; ------, Calculation without allowance for
spreading.
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